Эксперименты с карбидом кремния (SiC): замедление переключения SiC-MOSFET

Карборунд (карбид кремния) представляет собой плотный материал разной степени прозрачности, полученный в результате соединения песка с углём путём плавления. Экземпляры чёрного цвета по внешнему виду напоминают антрацит, но существуют и другие оттенки. При ярком свете минерал переливается радужными красками, образуя на поверхности разнообразные узоры.


Минерал – Карборунд

Благодаря многочисленным полезным свойствам, карборунд применяют не только в ювелирной промышленности, но и в электронике, сталеварении и др. К тому же, минерал обладает магическим и лечебным действием.

История и происхождение

Карборунд научились получать синтетическим способом ещё с середины XIX века, но запатентовали только в 1893 году. До 2016 года производителем искусственного камня были США, сегодня же основным поставщиком его на мировой рынок признан Китай. В настоящее время выпускается порядка 250 модификаций карборунда разных цветов и оттенков. Камни, которые используются в ювелирной промышленности, покрывают специальной плёнкой, позволяющей выглядеть кристаллу сродни настоящему бриллианту.

В природе этот кристалл распространён в очень малом количестве, поэтому найти крупные залежи практически невозможно.

Важно! Процесс получения фабричного камня происходит на новейшем технологичном оборудовании, где специалисты тщательно контролируют его стадию роста. Это позволяет получить практически идеальный минерал (без возможных изъянов).

Нахождение в природе

Содержание кремния в земной коре составляет по разным данным 27,6—29,5 % по массе. Таким образом, по распространённости в земной коре кремний занимает второе место после кислорода. Концентрация в морской воде 3 мг/л.

Чаще всего в природе кремний встречается в виде кремнезёма — соединений на основе диоксида кремния (IV) SiO2 (около 12 % массы земной коры). Основные минералы и горные породы, образуемые диоксидом кремния, — это песок (речной и кварцевый), кварц и кварциты, кремень, полевые шпаты. Вторую по распространённости в природе группу соединений кремния составляют силикаты и алюмосиликаты.

Отмечены единичные факты нахождения чистого кремния в самородном виде.

Физико-химические свойства камня

Химическая формула: SiC

Состояние: кристаллы, друзы или кристаллические порошки от прозрачного белого, жёлтого, зелёного или тёмно-синего до чёрного цветов, в зависимости от чистоты, дисперсности, аллотропных и политипных модификаций.

Температура плавления: 2830°C

Карбид кремния

:

  • Плотность 3,05 г/см³
  • Состав 93 % карбида кремния
  • Предел прочности на изгиб 320…350 МПа
  • Предел прочности на сжатие 2300 МПа
  • Модуль упругости 380 ГПа
  • Твердость 87…92 HRC
  • Трещиностойкость в пределах 3.5 — 4.5 МПа·м1/2,
  • Коэффициент теплопроводности при 100 °C, 140—200 Вт/(м·К)
  • Коэфф. теплового расширения при 20-1000 °C, 3,5…4,0 К−1⋅10−6
  • Вязкость разрушения 3,5 МПа·м1/2

Также читайте: Варисцит – саксонский амулет счастья
Самосвязанный карбид кремния

:

  • Плотность 3,1 г/см³
  • Состав 99 % карбида кремния
  • Предел прочности на изгиб 350—450 МПа
  • Предел прочности на сжатие 2500 МПа
  • Модуль упругости 390—420 ГПа
  • Твердость 90…95 HRC
  • Трещиностойкость в пределах 4 — 5 МПа·м1/2,
  • Коэффициент теплопроводности при 100 °C, 80 — 130 Вт/(м·К)
  • Коэфф. теплового расширения при 20-1000 °C, 2,8…4 К−1⋅10−6
  • Вязкость разрушения 5 МПа·м1/2

ВК6ОМ

:

  • Плотность 14,8 г/см³
  • Состав Карбид вольфрама
  • Предел прочности на изгиб 1700…1900 МПа
  • Предел прочности на сжатие 3500 МПа
  • Модуль упругости 550 ГПа
  • Твердость 90 HRA
  • Трещиностойкость в пределах 8-25 МПа·м1/2,
  • Коэффициент теплопроводности при 100 °C, 75…85 Вт/(м·К)
  • Коэфф. теплового расширения при 20-1000 °C, 4,5 К−1⋅10−6
  • Вязкость разрушения 10…15 МПа·м1/2

Силицированный графит СГ-Т

:

  • Плотность 2,6 г/см³
  • Состав 50 % карбида кремния
  • Предел прочности на изгиб 90…110 МПа
  • Предел прочности на сжатие 300…320 МПа
  • Модуль упругости 95 ГПа
  • Твердость 50…70 HRC
  • Трещиностойкость в пределах 2-3 МПа·м1/2,
  • Коэффициент теплопроводности при 10 °C, 100…115 Вт/(м·К)
  • Коэфф. теплового расширения при 20-1000 °C, 4,6 К−1⋅10−6
  • Вязкость разрушения 3…4 МПа·м1/2

Исследование процесса переключения SiC-MOSFET

Планируя разработку источника питания со входным напряжением до 1500В, я заранее начал изучать особенности применения карбид-кремниевых транзисторов. Особенно меня интересовали вопросы критических значений скорости нарастания напряжения сток-исток (dV/dt), а также методы замедления переключения. Ответы на эти вопросы удалось получить на вебинаре одного из дистрибьюторов:

После того, как была собрана и отлажена первая итерация преобразователя, я решил провести исследования возможности замедлить процесс переключения. Преобразователь выполнен по полумостовой топологии, мощность 100 Вт, напряжение питания 750В, управление транзисторами сделано по следующей схеме:

При увеличении сопротивления затворных резисторов (R2, R3), измерялись значения длительности фронтов переключения, а также КПД всего преобразователя. Честно говоря, я ожидал, что при затягивании фронтов динамические потери будут расти, а КПД падать. В реальности получилось иначе – изменения КПД были не существенными. Точнее, при измерении с использованием амперметра, встроенного в источник питания разница была не заметна из-за низкого разрешения данного измерителя. Понял свою ошибку и измерил заново уже с использованием более точного амперметра.

В крайних точках получил следующие значения:

  • при затворных сопротивлениях 5,6 Ом КПД равен 85,0%;
  • при затворных сопротивлениях 330 Ом КПД равен 84,46%.

Таким образом добавочная мощность получилась около 0,5 Вт. Можно предположить, что это следствие увеличения только динамических потерь. Даже в таком случае, делим на два транзистора и получаем по 0,25 Вт прибавки мощности рассеивания на один ключ. Не сказал бы, что это много. К тому же, 330 Ом в затворе – это совершенно невозможное значение! Ставить такие резисторы честно говоря было страшно (разработчики силовухи меня поймут) и удивляюсь, как источник со входным напряжением 750В при этом не сгорел. Но, как говорится, чего не сделаешь ради кликбейта науки.
Осциллограммы напряжения сток-исток нижнего ключа при затворных резисторах 5,6 Ом:

Осциллограммы напряжения сток-исток нижнего ключа при затворных резисторах 220 Ом:

Зависимость времён переключения от величины затворных резисторов:

Конечно мне было очень интересно, что происходит на затворе при затворном резисторе 330 Ом. Полка Миллера оказалась не такой уж огромной:

Сферы применения

Карборунд используется во многих областях промышленности, т. к. обладает высокой устойчивостью к разрушению и воздействию экстремальных температур. Вот основные сферы его применения:

  • В качестве конструкционного материала — из камня изготавливают тормоза для гоночных автомобилей, панели и плиты, элементы для военной техники, абразивные насадки и др.
  • В электронике — на основе карбида кремния изготавливают полупроводниковые приборы (тиристоры), сверхбыстрые диоды и пр.
  • В сталеварении — используется в качестве топлива для получения стали, а также в коррекции температурного режима при производстве металлических изделий.
  • В ядерной энергетике — из минерала изготавливают покрытие для элементов ядерного топлива, добавляют в состав шлифовальных паст и др.
  • В ювелирном деле — применяется в качестве муассанита (т. к. по внешнему виду напоминает алмаз), им украшают кольца, ожерелья, колье, браслеты, серьги, броши и т. д.

Также читайте: Алланит — кладезь редких элементов

Интересный факт! Муассанит часто используют для имитации бриллианта, продавая покупателю изделия по стоимости дорогостоящего драгоценного камня (т. к. невооружённым глазом трудно отличить один от другого).


Карбид кремния – достаточно дешёвый материал. Связано это с тем, что он очень твёрдый и активно используется для создания, к примеру, наждачной бумаги. Также из него делают лещадки, нагреватели (до 1400С!) и много другое.
В виде порошка этот материал для керамиста может быть интересен тем, что с его помощью можно получить «пенные» глазури. А также получить в обжиге металлическую медь без сования горшка в опилки. Даже классические «селадоновые» глазури – это может быть интересно настоящим эстетам.

В этой статье мы расскажем про карбид кремния 80мкм и 20мкм.

Карбид кремния имеет формулу SiC. Зерно из карбида окружено слоём кварца SiO2. В расплаве глазури кварцевая оболочка растворяется и карбид окисляется (SiC + 2O2 -> SiO2 + CO2). Газообразный углекислый газ (CO2) всплывает пузырьками и дающими пену. Важно понимать, что процесс начинается после того как глазурь расплавилась и продолжается на всём протяжении обжига, пока глазурь опять не застынет. По-крайней мере, если весь карбид кремния не сгорел. Чем более жидкая глазурь, тем быстрее идёт этот процесс. Чем выше температура, тем быстрее идёт процесс. Чем крупнее средний размер частиц карбида кремния, тем крупнее будут пузыри, но тем медленнее будет процесс. Таким образом, можно под нужную степень «пенности» подобрать глазурь. Или подобрать температуру и выдержку для нужной «пенности» для конкретной глазури. Например, в 0119 на 1050-1070 карбид кремния даёт достаточно крупные, хрупкие пузыри, а в районе 950 можно получить что-то похожее по фактуре на 205-99. Основной минус карбида кремния в том, что из-за примесей после себя (или в виде себя, если он не до конца сгорел) оставляет тёмные точки и пятна. Частично эта проблема решается добавлением различных пигментов и оксидов.

Для лучшего понимания ситуации мы подготовили немного пробников карбида кремния разной дисперсности в разных глазурях. М – мелкий карбид кремния около 20 мкм, К – крупный, около 80 мкм. Н – «низкая» температура, 1070 градусов, В – «высокая» — 1220. Количество карбида кремния – около 2% по сухому весу сверх 100%. Выдержка во всех случаях была около 20 минут, объём печи – 40 литров. Толщина глазури во всех случаях около ¼ г/см2. О потёчности глазурей вы можете прочитать здесь.

102 М В

102 глазурь на 1220 обладает высокой потёчностью, мелкий карбид кремния почти полностью сгорает, оставляя только пару крупных, острых пузырей. Наверняка, увеличив выдержку, можно добиться гладкой поверхности.

128 М В

«Средняя» потёчность также позволяет на 1220 сгореть почти всему карбиду, оставляя большую часть оставшихся пузырьков внутри.

145 М В

Почти непотёчная 145 оставляет серый карбид кремния почти невыгоревшим, а все пузырьки «задерживает» в себе. Неплохой вариант для получения аналога 205-99 на 1200. Нужно только как-нибудь заглушить остающуюся серость. К примеру, микронным цирконом.

102 К В

В потёчной 102ой на 1220 даже крупный карбид кремния сгорает практически полностью. Отличий от мелкого почти не видно. Очевидно, на изделии разница будет.

128 К В

Благодаря более крупным пузырькам, подложкап лучше видна за счёт меньшего рассеяния света. К сожалению, на фото не видно – поверхность более неоднородная и с большим числом небольших кратеров.

145 К В

Пена от крупного гранулята в 145ой выглядит более неаккуратно, глазурь получилась менее «пушистая».

1046 М Н

1046 – щелочной флюс, который можно воспринимать как очень потёчную кракле-глазурь. На 1070 Она ведёт себя аналогично 102ой на 1220, разницы практически нет.

102 М Н

102 на 1070 с мелким гранулятом даёт самый необычный эффект – очевидно, сначала глазурь «поднялась», потом местами образовались кратеры, а потом она в таком виде и застыла. Истинно-вулканическая глазурь! К сожалению, контролировать такие эффекты достаточно сложно, поэтому такой глазури пока что нет в продаже.

106 М Н

106 оказалась слишком непотёчной, не дав пузырькам «поднять» глазурь – газ, похоже, выходил только через некоторые каналы, которые хорошо видно на картинке.

1046 К Н

Аналогично другим случаям с очень потёчными глазурями – особой разницы не видно.

102 К Н

С крупным карбидом 102 на 1070 сразу даёт крупные пузыри, давая меньше объёма из-за меньшего количества мелкой пены.

106 К Н

106 с крупным карбидом кремния даёт более однородную поверхность, что скорее всего связано с тем, что пузыри газа почти сразу поднимаются к поверхности, в случае же с мелким – хаотично объединяются из мелких в крупные, давая больше неоднородностей.

Вторая особенность карбида кремния заключается в том, что он восстанавливает медь до металла. Не только медь, но об этом после. Когда глазурь растворяет кварцевую оболочку зерна карбида, он, соприкасаясь с оксидом меди, восстанавливает её до меди. Упрощённо, можно написать реакцию так: SiC+ 4 CuO -> SiO2+ CO2+ 4Cu. К сожалению, процесс восстановления меди также сопровождается образованием пузырьков углекислого газа. Также важно понимать, что после образования, медь плавно начинает окисляться обратно, сначала давая чёрный нерастворённый оксид меди (2), затем растворяясь, что даёт типичные сине-зелёные медные оттенки. Также иногда удаётся «поймать» очень красный оксди меди (1) или умеренно-красную медь, осевшую на подложку. Разумеется, мы сделали образцы и с медью. К счастью, некоторое время назад в продаже появился карбонат меди, который до начала плавления глазури превращается в оксид, а работать с ним удобнее – не так склонен к оседанию, образованию комков, молоть его не нужно. Очень удобная замена. Во всех образцах – 3% карбоната меди по сухому весу сверх 100% (всё остальное – так же).

102 М В

Очень «сильный» результат. Медь образовалась по всему объёму глазури, не успела осесть (что даёт немного мусорный вид и цвет близкий к коричневому). Местами окислилась, не растворившись, что дало чёрные прожилки, местами – растворившись (зелёное около пузырька). Немного пузырьков скорее портят картину, поэтому, вероятно, стоило бы просто немного увеличить выдержку – например, до 30-40 минут. Или поднять температуру на 10-20 градусов.

128 М В

Как ни странно, в менее потёчной 128 медь окислилась после восстановления сильнее, пузырей на поверхности больше. Скорее всего, образец стоял ближе всего к спиралям, так как такое поведение характерно для более, а не менее потёчных глазурей. Значительная часть меди осела на дно, давая очень красивые узоры, подчёркивающие рельеф. Остальная – почти полностью растворилась, давая типичный прозрачный зелёно-бирюзовый оттенок. Проблему пузырей, в теории, можно решить, сделав выдержку на 200 градусов ниже «рабочей» температуры минут на 20. Однако заранее сложно сказать, как это повлияет на медь.

102 К В

102 с крупным карбидом получилась «серо-буро-малиновой в пупырку». Все возможные эффекты от карбида и от меди, всех поровну.

128 К В

128 – аналогично, но поверхность – чуть более гладкая, цвет – чуть более насыщенный. Скорее всего, снизу – больше меди, сверху – больше растворённого оксида меди.

145 К В

Разбивание этого пробника показало, что медь не в виде металла не только у поверхности, но и по всему объёму. Скорее всего, медь в пене окисляется гораздо лучше, чем прикрытая слоем пусть и более потёчной, но и более монолитной глазури.

1046 М Н

Отдалённо напоминает «медные трубы» (мы делаем их не через карбид кремния). Остатки нерастворённого оксида меди в толще глазури, в остальных местах – типичная 1046 с медью. Что интересно – пузырей практически нет, в отличие от образца без меди. Оксид или карбонат меди – источник дополнительного кислорода, доступного для карбида кремния в глазури, что заставляет его сгореть и закончить газить раньше, а значит и поверхность будет более гладкой. Хотя в этом случае всё произошло слишком рано – и меди в виде металла почти не осталось.

102 М Н

Настоящий шедевр для редких ценителей кислоты, докипающей в ржавом котле. Большая часть меди осталась в виде металла, только некоторые области, где осталось больше всего пор, окислились «обратно». Это (и образец со 145) говорит о том, что медь продолжает окисляться тогда, когда глазурь уже практически твёрдая. Верно и обратное – профессионалы раку обжигов не дадут соврать.

106 М Н

Более пенный, более пористый, а значит (как мы выяснили выше) – более окисленный результат по сравнению с предыдущим образцом.

1046 К Н

Более крупный карбид крения медленнее выгорает, в данном случае это позволило остаться большему количеству меди. И пузырей.

102 К Н

Более крупный карбид кремния в менее потёчной глазури даёт больше пор, в результате медь всё-таки сгорает, оставаясь только в углублениях.

106 К Н

Самый загадочный результат – медь выгорела только на поверхности, внутри – малиновый оттенок. В среднем, пористость выше, чем для образца с мелким карбидом кремния. Похоже, что мелкий карбид кремния сгорел до начала остывания, этот – после, сохранив ценную сердцевину.

Теоретически, при помощи карбида кремния можно восстановливать никель до металла, трёхвалентное железо до двухвалентного, ванадий (5) до ванадия (4), стабилизировать церий (3) и тд. К примеру, на замечательном сайте glazy.org по запросу «seladon» можно найти неплохой пример получения настоящих селадоновых глазурей именно через восстановление карбидом кремния:

Главная особенность карбида кремния, усложняющая работу с ним – как обожжёшь, так и получится. Толщина слоя, выдержка, ставка, герметичность печи, температура. Наверное, фарфористы легко подружатся с ним.

Автор: Виктор Акинфиев.

Лечебные свойства

Помимо практического применения в разных сферах промышленности, минерал обладает лечебными свойствами. Вот некоторые из них:

  • Избавляет от фобий и затяжной депрессии.
  • Успокаивает нервы и улучшает сон.
  • Нормализует обмен веществ.
  • Улучшает состояние ЖКТ в случае гастрита или язвы.
  • Восстанавливает функции печени, избавляя от гепатита и цирроза начальной стадии.
  • При постоянном ношении устраняет головные и суставные боли.
  • Нормализует гормональный фон.
  • Улучшает кроветворение, и особенно полезен при анемии.
  • Укрепляет иммунитет.

Магические свойства

Карборунд обладает следующими магическими свойствами:

  • Улучшает материальное благосостояние и притягивает деньги своему владельцу.
  • Помогает преодолеть страх на пути к цели, сметая все препятствия на пути.
  • Помогает своему владельцу обрести сексуальную притягательность для противоположного пола.
  • Улучшает память и интеллектуальные способности.
  • Защищает от внешнего негатива (порча, сглаз, проклятие).

Будьте осторожны! Постоянно носить при себе карборунд не рекомендуется, т. к. это чревато нервным возбуждением или бессонницей.

Стоимость камня

Карборунд имеет относительно невысокую стоимость, поэтому по карману каждому. Вот его примерные расценки (измеряются в российских рублях):

  • Необработанные самородки (кристаллы) — можно приобрести в пределах 1000 руб.
  • В качестве ювелирных украшений (подвески, кольца, колье, браслеты и др.) — 4000-15000.


Серьги из камня

Естественное явление

Монокристалл муассанита (размер ≈1 мм)

Встречающийся в природе муассанит содержится в очень незначительных количествах в некоторых типах метеоритов, а также в месторождениях корунда и кимберлитах . Практически весь карбид кремния, продаваемый в мире, включая муассаниты, является синтетическим . Природный муассанит был впервые обнаружен в 1893 году как небольшой компонент метеорита Каньон Диабло в Аризоне доктором Фердинандом Анри Муассаном , в честь которого этот материал был назван в 1905 году. Открытие Муассаном природного SiC первоначально оспаривалось, поскольку его образец мог быть загрязнен лезвиями из карбида кремния , которые уже были на рынке в то время.

Карбид кремния, хоть и редко встречающийся на Земле, широко распространен в космосе. Это обычная форма звездной пыли, обнаруживаемая вокруг богатых углеродом звезд , и примеры этой звездной пыли были обнаружены в первозданном состоянии в примитивных (неизмененных) метеоритах. Карбид кремния, обнаруженный в космосе и в метеоритах, почти всегда является бета-полиморфом . Анализ зерен SiC, обнаруженных в метеорите Мерчисон , углеродистом хондритовом метеорите, выявил аномальные изотопные отношения углерода и кремния, что указывает на то, что эти зерна возникли за пределами Солнечной системы.

Ранние эксперименты

Несистематические, менее признанные и часто непроверенные синтезы карбида кремния включают:

  • Сезар-Мансуэт Деспре пропускает электрический ток через угольный стержень, погруженный в песок (1849 г.)
  • Растворение кремнезема в расплавленном серебре в графитовом тигле Роберта Сидни Марсдена (1881 г.)
  • Нагревание смеси кремния и кремнезема в графитовом тигле Пауля Шютценбергера (1881 г.)
  • Нагревание кремния Альбертом Колсоном в потоке этилена (1882 г.).

Масштабное производство

Репликация экспериментов HJ Round со светодиодами

Широкомасштабное производство приписывают Эдварду Гудричу Ачесону в 1890 году. Ачесон пытался приготовить искусственные алмазы, когда нагрел смесь глины (силикат алюминия) и порошкообразного кокса (углерода) в железной чаше. Он назвал голубые кристаллы, которые образовали карборунд

, полагая, что это новое соединение углерода и алюминия, подобное корунду . Муассан также синтезировал SiC несколькими способами, включая растворение углерода в расплавленном кремнии, плавление смеси карбида кальция и кремнезема и восстановление кремнезема углеродом в электрической печи.

Ачесон запатентовал метод производства порошка карбида кремния 28 февраля 1893 года. Ачесон также разработал электрическую печь периодического действия, с помощью которой SiC производится до сих пор, и сформировал Carborundum Company для производства объемного SiC, первоначально для использования в качестве абразива. В 1900 году компания заключила соглашение с Electric Smelting and Aluminium Company, когда решением судьи ее основатели «в целом» отдавали приоритет «восстановлению руд и других веществ методом накаливания». Говорят, что Ачесон пытался растворить углерод в расплавленном корунде ( оксид алюминия ) и обнаружил присутствие твердых сине-черных кристаллов, которые он считал соединением углерода и корунда: отсюда и карборунд. Возможно, он назвал материал «карборунд» по аналогии с корундом, еще одним очень твердым веществом (9 по шкале Мооса ).

SiC впервые использовался в качестве абразива. Затем последовали электронные заявки. В начале 20 века карбид кремния использовался в качестве детектора в первых радиоприемниках. В 1907 году Генри Джозеф Раунд создал первый светодиод, подав напряжение на кристалл SiC и наблюдая желтое, зеленое и оранжевое излучение на катоде. Позднее этот эффект был открыт О.В. Лосевым в Советском Союзе в 1923 году.

Уход за украшениями

Материал искусственного минерала достаточно устойчив к внешним повреждениям, воздействию высоких температур и кислот, поэтому ухаживать за ним легко и просто. Чтобы муассанит долго служил «верой и правдой», достаточно соблюдать 2 условия:

  1. Хранить камень в шкатулке (можно в «компании» других украшений).
  2. По мере необходимости чистить любыми моющими средствами, за исключением абразивов (т. к. может пострадать микроплёнка, нанесённая на поверхность камня).

Получение

Карбид алюминия получается прямой реакцией алюминия с углеродом в дуговой печи:

Небольшое количество карбида алюминия является нормой в примеси технического карбида кальция. В электролитическом производстве алюминия данное соединение получается как продукт коррозии в графитовых электродах.

Получается при реакции углерода с оксидом алюминия:

Химические свойства

При реакции с водой или разбавленными кислотами карбид алюминия образует метан:

Реагирует с концентрированным гидроксидом натрия и водой, образуя комплексную соль — тетрагидроксоалюминат натрия и метан:

Физические свойства

  • Показатель преломления (для D-линии натрия): 2,7 (20 °C)
  • Стандартная энергия Гиббса образования (298 К, кДж/моль): −196
  • Стандартная энтропия образования (298 К, Дж/моль·K): 88,95

Совместимость со знаками зодиака

(«+++» — камень подходит идеально, «+» — можно носить, «-» — категорически противопоказан):

Знак зодиакаСовместимость
Овен+++
Телец+
Близнецы+++
Рак+
Лев+++
Дева+
Весы+++
Скорпион+
Стрелец+++
Козерог+
Водолей+++
Рыбы+

Минерал подходит всем знакам зодиака без исключения. Но наибольшую пользу он принесёт людям стихии Огня (Львы, Стрельцы, Овны) и Воздуха (Водолеи, Близнецы, Весы).

Вам подходит этот камень?

Интересное о камне

Распространено несколько интересных фактов о камне:

  • Возле вулкана Везувий (расположен в Италии) туристам в качестве карборунда продают застывшую лаву.
  • Муассанит часто называют «космическим» камнем, т. к. в космосе он присутствует в большем количестве, нежели на Земле.
  • Учёные предполагают, что природный карбид кремния впервые появился за пределами Солнечной системы. К таким выводам они пришли после изучения Мерчисонского метеорита.
  • Впервые минерал был открыт французским учёным Анри Муассаном. Отсюда и его говорящее название.

Ссылки

  • Kelly, Jim.
    A brief history of SiC : // Jim Kelly’s filing cabinet. — Department of Chemistry, University College London, 2005. — 22 июня. — Дата обращения: 23.06.2020.
  • Карбид кремния: технология, свойства, применение / Под ред. Беляева А. Е., Конаковой Р. В. — Харьков: ИСМА, 2010. — 532 с. — ISBN 978-966-02-5445-9
  • Дигонский С. В.
    Газофазные процессы синтеза и спекания тугоплавких веществ. — М.: ГЕОС, 2013. — 462 с.
Словари и энциклопедии
  • Большая каталанская
  • Большая российская
  • Малый Брокгауза и Ефрона
  • Britannica (онлайн)
  • Britannica (онлайн)
Нормативный контроль
  • BNF: 13163471b
  • GND: 4055009-6
  • LCCN: sh85122519
  • Microsoft: 2780722187
  • NDL: 00572656
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]